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Controlling complex networked systems to desired states is a key research goal in contemporary science.
Despite recent advances in studying the impact of network topology on controllability, a comprehensive
understanding of the synergistic effect of network topology and individual dynamics on controllability is
still lacking. Here we offer a theoretical study with particular interest in the diversity of dynamic units
characterized by different types of individual dynamics. Interestingly, we find a global symmetry accounting
for the invariance of controllability with respect to exchanging the densities of any two different types of
dynamic units, irrespective of the network topology. The highest controllability arises at the global
symmetry point, at which different types of dynamic units are of the same density. The lowest controllability
occurs when all self-loops are either completely absent or present with identical weights. These findings
further improve our understanding of network controllability and have implications for devising the
optimal control of complex networked systems in a wide range of fields.

C
omplex networks, such as Internet, WWW, power-grid, cellular and ecological networks, have been at the
forefront of complex system studies for more than a decade1,2. Universal principles that govern the
topology and evolution of complex networks have significantly enriched our understanding of them3,4.

Fairly recently, controlling complex networks to desired final states has been a very hot research topic in complex
system studies5–8.

As a key notion in control theory, controllability denotes our ability to drive a dynamical system from any
initial state to any desired final state in finite time9,10. For the canonical linear time-invariant (LTI) system
_x~AxzBu with state vector x[RN , state matrix A[RN|N and control matrix B[RN|M , Kalman’s rank con-
dition (i.e., rank B,AB, � � � ,AN{1B

� �
~N) is sufficient and necessary to assure controllability. Yet, in many cases

system parameters are not exactly known, rendering classical controllability tests impossible. By assuming that
system parameters are either fixed zeros or freely independent, structural control theory (SCT) helps us overcome
this difficulty for LTI systems11–15. Quite recently, many research activities have been devoted to study the
structural controllability of linear systems with complex network structure, where system parameters (e.g., the
elements in A, representing link weights or interaction strengths between nodes) are typically not precisely
known, only the zero-nonzero pattern of A is known5,6,16–21. Network controllability problem can be typically
posed as a combinatorial optimization problem, i.e., identify a minimum set of driver nodes, with size denoted by
ND, whose control is sufficient to fully control the system’s dynamics5. While the intrinsic individual dynamics
can be incorporated in the network model, it would be more natural and fruitful to consider their effects
separately. Hence, most of the previous studies focused on the impact of network topology, rather than the
individual dynamics of nodes, on network controllability5,17. Other control related issues, e.g., energy cost of
control, have also been extensively studied for complex networked systems22–25.

If one explores the impact of individual dynamics on network controllability in the SCT framework, a specious
result would be obtained—a single control input can make an arbitrarily large linear system controllable.
Although this result as a special case of the minimum inputs theorem has been proved5 and its implication
was further emphasized in Ref. 26, this result is inconsistent with empirical situations, implying that the SCT is
inapplicable in studying network controllability, if individual dynamics of nodes are imperative to be incorpo-
rated to capture the collective dynamic behavior of a networked system. To overcome this difficulty, and more
importantly, to understand the impact of individual dynamics on network controllability, we revisit the key
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assumption of SCT, i.e., the independency of system parameters. We
anticipate that major new insights can be obtained by relaxing this
assumption, e.g., considering the natural diversity and similarity of
individual dynamics. This also offers a more realistic characteriza-
tion of many real-world networked systems where not all the system
parameters are completely independent.

To solve the network controllability problem with dependent sys-
tem parameters, we rely on the recently developed exact controll-
ability theory (ECT)27. ECT enables us to systematically explore the
role of individual dynamics in controlling linear systems with
arbitrary network topology. In particular, we consider prototypical
linear forms of individual dynamics (from first-order to high-orders)
that can be incorporated within the network representation of the
whole system in a unified matrix form. This paradigm leads to the
discovery of a striking symmetry in network controllability: if we
exchange the fractions of any two types of dynamic units, the sys-
tem’s controllability (quantified by ND) remains the same. This
exchange-invariant property gives rise to a global symmetry point,
at which the highest controllability (i.e., lowest number of driver
nodes) emerges. This symmetry-induced optimal controllability
holds for any network topology and various categories of individual
dynamics. We substantiate these findings numerically in a variety of
network models.

Results
Controllability measurement. ECT27 claims that for arbitrary
network topology and link weights characterized by the state
matrix A in the LTI system _x~AxzBu, the minimum number of
driver nodes ND required to be controlled by imposing independent
signals to fully control the system is given by the maximum
geometric multiplicity maxi{m(li)} of A’s eigenvalues {li}28–32. Here
m(li) ; N 2 rank(liIN 2 A) is the geometric multiplicity of the

eigenvalue li and IN is the identity matrix. Calculating all the eigen-
values of A and subsequently counting their geometric multiplicities
are generally applicable but computationally prohibitive for large
networks. If A is symmetric, e.g., in undirected networks, ND is
simply given by the maximum algebraic multiplicity maxi{d(li)},
where d(li) denotes the degeneracy of eigenvalue li. Calculating
ND in the case of symmetric A is more computationally affordable
than in the asymmetric case. Note that for structured systems where
the elements in A are either fixed zeros or free independent
parameters, ECT offers the same results as that of SCT27.

Controllability associated with first-order individual dynamics.
We first study the simplest case of first-order individual dynamics
_xi~a0xi. The dynamical equations of an LTI control system
associated with first-order individual dynamics33 can be written as

_x~LxzAxzBu~WxzBu, ð1Þ

where the vector x~ x1, � � � ,xNð ÞT captures the states of N nodes,
L[RN|N is a diagonal matrix representing intrinsic individual
dynamics of each node, A[RN|N denotes the coupling matrix or
the weighted wiring diagram of the networked system, in which aij

represents the weight of a directed link from node j to i (for
undirected networks, aij 5 aji). u~ u1,u2, � � � ,uMð ÞT is the input
vector of M independent signals, B[RN|M is the control matrix,
and W ; L 1 A is the state matrix. Without loss of generality, we
assume L is a ‘‘constant’’ matrix over the field Q (rational numbers),
and A is a structured matrix over the field R (real numbers). In other
words, we assume all the entries in W have been rescaled by the
individual dynamics parameters. The resulting state matrix W is
usually called a mixed matrix with respect to (Q,R)34. The first-
order individual dynamics in W is captured by self-loops in the
network representation of W (see Fig. 1a). ND can then be

Figure 1 | Integration of network topology and intrinsic individual dynamics. 1st-order (a), 2nd-order (b) and 3rd-order (c) individual dynamics. For a

dth-order individual dynamics x dð Þ~a0x 0ð Þza1x 1ð Þz � � �zad{1x d{1ð Þ, we denote each order by a colored square and the couplings among orders are

characterized by links or self-loops. This graphical representation allows individual dynamics to be integrated with their coupling network topology,

giving rise to a unified matrix that reflects the dynamics of the whole system. In particular, each dynamic unit in the unified matrix corresponds to a

diagonal block and the nonzero elements (denoted by *) apart from the blocks stand for the couplings among different dynamic units. Therefore, the

original network consisting of N nodes with order d is represented in a dN 3 dN matrix.
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determined by calculating the maximum geometric multiplicity
maxi{m(li)} of W’s eigenvalues.

We study two canonical network models (Erdös-Rényi and Scale-
free) with random edge weights and a rs fraction of nodes associated
with identical individual dynamics (i.e., self-loops of identical
weights). As shown in Fig. 2a, b, the fraction of driver nodes nD ;
ND/N is symmetric about rs 5 0.5, regardless of the network topo-
logy. (Note that SCT predicts that in case of independent self-loop
weights, nD monotonically decreases as rs augments and eventually
rs 5 1 leads to nD 5 1/N, implying that a single driver node can fully
control the whole network26.) The symmetry can be theoretically
predicted (see Methods). An immediate but counterintuitive con-
sequence from the symmetry is that nD in the absence of self-loops
is exactly the same as the case that each node has a self-loop with
identical weight. This is a direct consequence of Kalman’s rank con-
dition for controllability9:

rank B,AB, � � � ,AN{1B
� �

~rank B, AzwsINð ÞB, � � � , AzwsINð ÞN{1B
� �

,ð2Þ

where the left and the right hand sides are the rank of controllability
matrix in the absence and full of identical self-loops, respectively (see
Supplementary Sec.1 for proof).

The presence of two types of nonzero self-loops s2 and s3 leads to
even richer behavior of controllability. If the three types of self-loops
(including self-loops of zero weights) are randomly distributed at
nodes, the impact of their fractions on nD can be visualized by map-
ping the three fractions into a 2D triangle, as shown in Fig. 2e. We see
that nD exhibits symmetry in the triangle and the minimum nD

occurs at the center that represents identical fractions of the three
different self-loop types. The symmetry-induced highest controll-
ability can be generalized to arbitrary number of self-loops.
Assume there exist n types of self-loops s1, � � � ,sn with weights
w 1ð Þ

s , � � � ,w nð Þ
s , respectively, we have

ND~N{ min
i

rank W{w ið Þ
s IN

� �n o
ð3Þ

for sparse networks with random weights (see Supplementary Sec.2
for detailed derivation and the formula of dense networks). An

immediate prediction of Eq. (3) is that ND is primarily determined
by the self-loop with the highest density, simplifying Eq. (3) to be
ND~N{rank W{wmax

s IN
� �

, where wmax
s is the weight of the pre-

vailing self-loop (see Supplementary Sec.2). Using Eq. (3) and the fact
that W is a mixed matrix, we can predict that ND remains unchanged
if we exchange the densities of any two types of self-loops (see
Methods), accounting for the symmetry of ND for arbitrary types
of self-loops. Due to the dominance of ND by the self-loop with the
highest density and the exchange-invariance of ND, the highest con-
trollability with the lowest value of ND emerges when distinct self-
loops are of the same density.

To validate the symmetry-induced highest controllability pre-
dicted by our theory, we quantify the density heterogeneity of self-
loops as follows:

D:
XNs

i~1

r ið Þ
s {

1
Ns

����
����, ð4Þ

where Ns is the number of different types of self-loops (or the divers-
ity of self-loops). Note that D 5 0 if and only if all different types of

self-loops have the same density, i.e., r 1ð Þ
s ~r 2ð Þ

s ~ � � � r Nsð Þ
s ~

1
Ns

, and

the larger value of D corresponds to more diverse case. Figure 2e, f
shows that nD monotonically increases with D and the highest con-
trollability (lowest nD) arises at D 5 0, in exact agreement with our
theoretical prediction. The effect of the heterogeneity of nodal
dynamics on the controllability resembles that of the structural het-
erogeneity discovered in Ref. 5, i.e., more degree heterogeneity leads
to larger nD and hence worse controllability. Figure 2g, h display nD

as a function of Ns. We see that nD decreases as Ns increases, suggest-
ing that the diversity of individual dynamics facilitates the control of
a networked system. When Ns 5 N (i.e., all the self-loops are inde-
pendent), nD 5 1/N, which is also consistent with the prediction of
structural control theory5.

Controllability for high-order individual dynamics. In some real
networked systems, dynamic units are captured by high-order

Figure 2 | Controllability of networks with 1st-order individual dynamics. (a–b), controllability measure nD in the presence of a single type of nonzero

self-loops with fraction rs for random (ER) networks (a) and scale-free (SF) networks (b) with different average degree Ækæ. (c–d), nD of ER (c) and SF

networks (d) with three types of self-loops s1, s2 and s3 with density r 1ð Þ
s , r 2ð Þ

s and r 3ð Þ
s , respectively. The color bar denotes the value of nD and the

coordinates in the triangle stands for r 1ð Þ
s r 2ð Þ

s and r 3ð Þ
s . (e–f), nD as a function of the density heterogeneity of self-loops (D) for ER (e) and SF (f) networks.

(g–h), nD as a function of the number of different types of self-loops for ER (g) and SF (h) networks. ECT denotes the results obtained from the exact

controllability theory, ET denotes the results obtained from the efficient tool and GA denotes the results obtained from the graphical approach. The

dotted line in (g) is nD 5 1/Ns. The networks are described by structured matrix A and their sizes in (a)–(d) are 2000 and that in (e)–(h) are 1000. The

results from ECT and ET are averaged over 30 different realizations, and those from GA are over 200 realizations.
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individual dynamics, prompting us to check if the symmetry-
induced highest controllability still holds for higher-order indivi-
dual dynamics. The graph representation of dynamic units with
2nd-order dynamics is illustrated in Fig. 1b. In this case, the

eigenvalues of the dynamic unit’s state matrix
0 1
a0 a1

	 

plays a

dominant role in determining ND. For two different units as
distinguished by distinct (a0 a1) one can show that their state
matrices almost always have different eigenvalues, except for some
pathological cases of zero measure that occur when the parameters
satisfy certain accidental constraints. The eigenvalues of dynamic
unit’s state matrix take over the roles of self-loops in the 1st-order
dynamics, accounting for the following formulas for sparse networks

ND~2N{ min
i

rank W{l ið ÞI2N

� �n o
, ð5Þ

where l(i) is either one of the two eigenvalues of type-i dynamic unit’s
state matrix. The formula implies that ND is exclusively determined
by the prevailing dynamic unit, (see Supplementary Section 2). The
symmetry of ND, i.e., exchanging the densities of any types of
dynamic units does not alter ND (see Methods), and the emergence
of highest controllability at the global symmetry point can be
similarly proved as we did in the case of 1st-order individual
dynamics.

The 3rd-order individual dynamics are graphically characterized
by a dynamic unit composed of three nodes (Fig. 1c), leading to a 3N
3 3N state matrix (Fig. 1c). We can generalize Eq. (5) to arbitrary
order of individual dynamics:

ND~dN{ min
i

rank W{l
ið Þ

d IdN

� �n o
, ð6Þ

where d is the order of the dynamic unit, l
ið Þ

d is any one of the d
eigenvalues of type-i dynamic units and IdN is the identity matrix of
dimension dN. In analogy with the simplified formula for the 1st-
order dynamics, insofar as a type of individual dynamics prevails in
the system, Eq. (6) is reduced to ND~dN{rank W{lmax

d IdN
� �

,
where lmax

d is one of the eigenvalues of the prevailing dynamic unit’s
state matrix. The global symmetry of controllability and the highest

controllability occurs at the global symmetry point can be proved for
individual dynamics of any order and arbitrary network topology.
Fig. 3 displays the results for 2nd- and 3rd-order individual
dynamics, where the density heterogeneity for high-order dynamic

units is defined as D:
XNu

i~1
r ið Þ

u {1=Nu

�� ��, Nu is the number of

different dynamic units and r ið Þ
u is the density of type-i dynamic unit.

We have also explored the mixture of individual dynamics with
different orders, finding the symmetry of nD and the highest con-
trollability at the global symmetry point, in agreement with those
found in the networks with single-order individual dynamics (see
Fig. 4).

Discussion
In summary, we map individual dynamics into dynamic units that
can be integrated into the matrix representation of a networked
system, offering a general paradigm to explore the joint effect of
individual dynamics and network topology on the system’s controll-
ability. The paradigm leads to a striking discovery: the universal
symmetry of controllability as reflected by the invariance of controll-
ability with respect to exchanging the fractions of any two different
types of individual dynamics, and the emergence of highest controll-
ability at the global symmetry point. The global symmetry indicates
that the controllability is determined exclusively by the densities of
different individual dynamics rather than their specific intrinsic
dynamics. These findings generally hold for arbitrary networks
and individual dynamics of any order. The symmetry-induced high-
est controllability has immediate implications for devising and
optimizing the control of complex systems by for example, perturb-
ing individual dynamics to approach the symmetry point without the
need to adjust network structure.

The theoretical paradigm and tools developed here also allow us to
address a number of questions, the answers to which could offer
further insights into the control of complex networked systems.
For example, similar individuals are often accompanied by dense
inner connections among them, accounting for the widely observed
communities with relatively sparse connections among them in nat-
ural and social systems. How such structural property in combina-

Figure 3 | The controllability of networks with high-order individual dynamics. (a–b), controllability measure nD in the presence of two types of

dynamic units with density r 1ð Þ
u and r 2ð Þ

u belonging to the 2nd-order dynamic units (a) and 3rd-order dynamic units (b) for ER random networks with

different average degree Ækæ. (c–d), nD in the presence of three types of dynamic units with density r 1ð Þ
u , r 2ð Þ

u and r 3ð Þ
u belonging to the 2nd-order dynamic

units (c) and 3rd-order dynamic units (d) for ER random networks. The triangle has the same meaning as that in Fig. 2. (e–f), nD as a function of the

density heterogeneity (D) for 2nd-order (e) and 3rd-order (f) dynamic units on ER random networks. (g–h), nD as a function of the number Nu of

different dynamic units subject to 2nd-order (g) and 3rd-order (h). The dotted line in (g) and (h) is nD 5 1/Nu. The network size of the 2nd-order

dynamic units is 1000 and that of the 3rd-order dynamic units is 500. The networks are described by structured matrices A. The results from ECT and ET

are averaged over 30 different realizations, and those from GA are over 200 realizations.
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tion with the similarity and diversity of individual dynamics impacts
control is worthy of exploration. Despite the advantage of our tools
compared to the other methods in the literature, the network systems
that we can address are still the tip of the iceberg, raising the need of
new tools based on network science, statistic physics and control
theory. At the present, we are incapable of tackling general nonlinear
dynamical systems, which is extremely challenging not only in com-
plex networks but also in the canonical control theory. Nevertheless,
our approach, we hope, will inspire further interest from physicists
and other scientists towards achieving ultimate control of complex
networked systems.
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Figure 4 | The controllability of networks consisting of a mixture of dynamic units with different orders. (a), nD as a function of the density r2nd
u of the

2nd-order dynamic unit incorporated with the 1st-order dynamic units. (b), nD as a function of the densities r1st
u , r2nd

u and r3rd
u of dynamic units

associated with different orders. (c), nD as a function of the density heterogeneity, D, for a mixture of dynamic units from 1st- to 3rd-order. (d), nD as a

function of the number Nu of a mixture of different dynamic units from 1st- to 3rd-order. The number of dynamic units in (a)–(d) is 500 and ER random

networks described by structural matrices are used. In (b), the average degree Ækæ 5 1. The dotted line in (d) is nD 5 1/Nu. Each data point is obtained by

averaging over 100 independent realizations. (See Supplementary Section 2 and 3 for ET and GA.)
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